5.8.3. Modeling and Optimization Based on MaplPy

In this section, we will demonstrate how to use MaplPy, the Python API extension package of MindOpt APL, to model and invoke MindOpt to solve the problem in Example of Non-linear Programming.

You can refer to the section MindOpt APL for more details of MindOpt APL. For a complete API introduction of MaplPy, you can refer to the MaplPy Manual.

First, create a .mapl file named mapl_lr.mapl and write the mathematical form of the problem to be optimized.

# Example: 2D Regularized Logistic Regression Classifcation
# 
# data points: 
# - label=1: {(1,2), (3,0)}
# - label=-1: {(-1,1),(3,-1)}

var x;
var y;
var z;

minimize 
    ln(1+exp(x+2*y+z)) + ln(1+exp(x-y-z)) + ln(1+exp(-3*x+y-z)) + ln(1+exp(3*x+z));
subto 
    x^2 + y^2 <= 1;

In the Python code, import the MaplPy package

import maplpy as mp

Create a new MAPL model named “lr”

    m = mp.MAPL('lr')  # Create MAPL model

Read the declared mathematical form into the model

    m.read(modelfile)  # Read model file

Specify the MindOpt solver and set its corresponding path

    m.setOption(mp.StrOption.SOLVER, "mindopt")  
    m.setOption(mp.StrOption.SOLVER_PATH, "/home/mindopt/mindopt/2.1.0/linux64-x86/bin") #you can set your own solver-path here

Invoke the solving function, which will automatically construct the optimization model and call MindOpt to solve it.

    m.solve() # Solve

Execute the Python code, and the log of the MindOpt solving process is as follows

[mindopt@idec mindopt] python mapl_lr.py
Running mindoptampl
MindOpt Version 2.1.0 (Build date: xxxxxxxx)
Copyright (c) 2020-2025 Alibaba Cloud.

Start license validation (current time : xxxxxxxx).
License validation terminated. Time : 0.002s

wantsol=1
Model summary.
 - Num. variables     : 3
 - Num. constraints   : 1
 - Num. nonzeros      : 8
 - Bound range        : [1.00e+00,1.00e+00]

Interior point method started.
 Iter         PrimObj         DualObj PrimFea DualFea  GapFea      Mu   Time
    0 +2.77258874e+00 +3.77258875e+00 0.0e+00 1.0e+00 1.0e+00 1.0e+00   0.00s
    1 +2.10107174e+00 +2.23028984e+00 0.0e+00 7.8e-01 1.0e-01 1.0e-01   0.00s
    2 +1.42075610e+00 +1.52543264e+00 6.7e-01 2.7e-01 1.8e-03 1.8e-03   0.00s
    3 +1.65885758e+00 +1.72802441e+00 0.0e+00 1.2e-01 3.6e-02 3.6e-02   0.00s
    4 +1.65511048e+00 +1.69576276e+00 0.0e+00 6.6e-02 2.1e-02 2.1e-02   0.00s
    5 +1.65736811e+00 +1.66000850e+00 0.0e+00 2.6e-04 2.6e-03 2.6e-03   0.00s
    6 +1.65490062e+00 +1.65506485e+00 0.0e+00 9.0e-06 1.6e-04 1.6e-04   0.00s
    7 +1.65474536e+00 +1.65474726e+00 0.0e+00 3.6e-08 1.9e-06 1.9e-06   0.00s
    8 +1.65474358e+00 +1.65474367e+00 0.0e+00 4.9e-12 9.1e-08 9.1e-08   0.00s
Terminated.
 - Method             : Interior point method.
 - Primal objective   : 1.6547435766246e+00
 - Dual objective     : 1.6547436675411e+00
 - Num. threads       : 1
 - Num. iterations    : 8
 - Solver details     : Solver terminated with a primal/dual optimal status.
Interior point method terminated. Time : 0.004203s

Optimizer summary.
 - Optimizer used     : Interior point method
 - Optimizer status   : OPTIMAL

Solution summary.       Primal solution 
 - Objective          : +1.6547435766e+00

OPTIMAL; objective 1.654744
Completed.

After successfully solving the problem, the MAPL model will obtain the optimal solution to the problem. We can retrieve its value through the API and print it:

x = m.getVariable("x").value
y = m.getVariable("y").value
z = m.getVariable("z").value

print("x = {}".format(x))
print("y = {}".format(y))
print("z = {}".format(z))

This will output

x = -0.5728551903261085
y = -0.8196564705817261
z = 1.2728750741453017

The example MaplPy-LR.py provides the complete Python source code:

import maplpy as mp

def lr_solve(modelfile):
    m = mp.MAPL('lr')  # Create MAPL model
    m.read(modelfile)  # Read model file

    m.setOption(mp.StrOption.SOLVER, "mindopt")  
    m.setOption(mp.StrOption.SOLVER_PATH, "/home/mindopt/mindopt/2.1.0/linux64-x86/bin") #you can set your own solver-path here
    m.solve() # Solve
    
    return m

m = lr_solve("mapl_lr.mapl")

x = m.getVariable("x").value
y = m.getVariable("y").value
z = m.getVariable("z").value

print("x = {}".format(x))
print("y = {}".format(y))
print("z = {}".format(z))