5.6.2. MIQCP Modeling and Optimization in CΒΆ
In this chapter, we will use MindOpt C API to model and solve the problem in Example of Mixed Integer Quadratically Constrained Programming.
Include the header file:
27#include <stdio.h>
Create an optimization model model
:
78 /* Step 1. Create environment and model. */
79 /*------------------------------------------------------------------*/
80 CHECK_RESULT(MDOemptyenv(&env));
Next, we set the optimization sense to minimization via MDOsetIntAttr()
and four variables are added by calling MDOaddvar()
. Their lower bounds, upper bounds, names, types and linear objective coefficients are defined as follows (for more details on how to use MDOsetIntAttr()
and MDOaddvar()
, please refer to Attributes):
86 /* Step 2. Input model. */
87 /*------------------------------------------------------------------*/
88 /* Change to minimization problem. */
89 CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
90
91 /* Add variables. */
92 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, 10.0, MDO_INTEGER, "x0"));
93 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
Note
The non-zero elements of the matrix \(A\) will be inputted later. After adding the four aforementioned variables, certain parameters of the constraint matrix, specifically size
, indices
, and value
, are set to 0
, NULL
, and NULL
, respectively. This means that, as of now, model
has no constraints.
Next, we will introduce the quadratic terms in the objective. Three arrays are utilized for this purpose. Specifically, qo_col1
, qo_col2
, and qo_values
record the row indices, column indices, and values of all the non-zero quadratic terms.
49 /* Prepare model data. */
50 /* Quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
51 int qo_nnz = 5;
52 int qo_col1[] = { 0, 1, 2, 3, 0 };
We call MDOaddqpterms()
to set the quadratic terms of the objective.
95 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
Now we start to add quadratic constraints to the model. The linear part is constructed in the same way as in the objective.
55 double qo_values[] = { 0.5, 0.5, 0.5, 0.5, 0.5 };
56
57 /* Linear part in the first constraint: 1 x0 + 1 x1 + 2 x2 + 3 x3 */
58 int row1_nnz = 4;
65 double qc1_values[] = { -0.5, -0.5, -0.5, -0.5, -0.5 };
66
67 /* Linear part in the second constraint: 1 x0 - 1 x2 + 6 x3 */
68 int row2_nnz = 3;
The quadratic part is constructed in the same way as it is in the objective as well.
59 int row1_idx[] = { 0, 1, 2, 3 };
60 double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
61 /* Quadratic part in the first constraint: - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
62 int qc1_nnz = 5;
63 int qc1_col1[] = { 0, 1, 2, 3, 0 };
69 int row2_idx[] = { 0, 2, 3 };
70 double row2_val[] = { 1.0, -1.0, 6.0 };
71 /* Quadratic part in the second constraint: 1/2 [x1^2] */
72 int qc2_nnz = 1;
73 int qc2_col1[] = { 1 };
We call MDOaddqconstr()
to input the linear constraints into model
:
98 CHECK_RESULT(MDOaddqpterms(model, qo_nnz, qo_col1, qo_col2, qo_values));
99
100 /* Add quadratic constraints. */
Once the model is constructed, we call MDOoptimize()
to solve the problem:
105 /* Step 3. Solve the problem and populate optimization result. */
106 /*------------------------------------------------------------------*/
We can retrieive the optimal objective value and solutions via getting attributes:
108 CHECK_RESULT(MDOoptimize(model));
109
110 CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
111 if (status == MDO_OPTIMAL)
112 {
113 CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
114 printf("The optimal objective value is: %f\n", obj);
115 for (int i = 0; i < 4; ++i)
116 {
117 CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
118 printf("x[%d] = %f\n", i, x);
119 }
120 }
121 else
122 {
Finally, we call MDOfreemodel()
and MDOfreeenv()
to free the model:
30/* Macro to check the return code */
31#define RELEASE_MEMORY \
127 /* Step 4. Free the model. */
The complete example code is provided in MdoMIQCPEx1.c:
1/**
2 * Description
3 * -----------
4 *
5 * Mixed Integer Quadratically constrained quadratic optimization (row-wise input).
6 *
7 * Formulation
8 * -----------
9 *
10 * Minimize
11 * obj: 1 x0 + 1 x1 + 1 x2 + 1 x3
12 * + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
13 *
14 * Subject To
15 * c0 : 1 x0 + 1 x1 + 2 x2 + 3 x3 - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] >= 1
16 * c1 : 1 x0 - 1 x2 + 6 x3 + 1/2 [x1^2] <= 1
17 * Bounds
18 * 0 <= x0 <= 10
19 * 0 <= x1
20 * 0 <= x2
21 * 0 <= x3
22 * Integer
23 * x0
24 * End
25 */
26
27#include <stdio.h>
28#include <stdlib.h>
29#include "Mindopt.h"
30
31/* Macro to check the return code */
32#define RELEASE_MEMORY \
33 MDOfreemodel(model); \
34 MDOfreeenv(env);
35#define CHECK_RESULT(code) { int res = code; if (res != 0) { fprintf(stderr, "Bad code: %d\n", res); RELEASE_MEMORY; return (res); } }
36#define MODEL_NAME "QCP_01"
37#define MODEL_SENSE "ModelSense"
38#define STATUS "Status"
39#define OBJ_VAL "ObjVal"
40#define X "X"
41
42int main(void)
43{
44 /* Variables. */
45 MDOenv *env;
46 MDOmodel *model;
47 double obj, x;
48 int status, i;
49
50 /* Prepare model data. */
51 /* Quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
52 int qo_nnz = 5;
53 int qo_col1[] = { 0, 1, 2, 3, 0 };
54 int qo_col2[] = { 0, 1, 2, 3, 1 };
55 double qo_values[] = { 0.5, 0.5, 0.5, 0.5, 0.5 };
56
57 /* Linear part in the first constraint: 1 x0 + 1 x1 + 2 x2 + 3 x3 */
58 int row1_nnz = 4;
59 int row1_idx[] = { 0, 1, 2, 3 };
60 double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
61 /* Quadratic part in the first constraint: - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
62 int qc1_nnz = 5;
63 int qc1_col1[] = { 0, 1, 2, 3, 0 };
64 int qc1_col2[] = { 0, 1, 2, 3, 1 };
65 double qc1_values[] = { -0.5, -0.5, -0.5, -0.5, -0.5 };
66
67 /* Linear part in the second constraint: 1 x0 - 1 x2 + 6 x3 */
68 int row2_nnz = 3;
69 int row2_idx[] = { 0, 2, 3 };
70 double row2_val[] = { 1.0, -1.0, 6.0 };
71 /* Quadratic part in the second constraint: 1/2 [x1^2] */
72 int qc2_nnz = 1;
73 int qc2_col1[] = { 1 };
74 int qc2_col2[] = { 1 };
75 double qc2_values[] = { 0.5 };
76
77 /*------------------------------------------------------------------*/
78 /* Step 1. Create environment and model. */
79 /*------------------------------------------------------------------*/
80 CHECK_RESULT(MDOemptyenv(&env));
81 CHECK_RESULT(MDOstartenv(env));
82 CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));
83
84
85 /*------------------------------------------------------------------*/
86 /* Step 2. Input model. */
87 /*------------------------------------------------------------------*/
88 /* Change to minimization problem. */
89 CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
90
91 /* Add variables. */
92 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, 10.0, MDO_INTEGER, "x0"));
93 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
94 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
95 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
96
97 /* Add quadratic objective term. */
98 CHECK_RESULT(MDOaddqpterms(model, qo_nnz, qo_col1, qo_col2, qo_values));
99
100 /* Add quadratic constraints. */
101 CHECK_RESULT(MDOaddqconstr(model, row1_nnz, row1_idx, row1_val, qc1_nnz, qc1_col1, qc1_col2, qc1_values, MDO_GREATER_EQUAL, 1.0, "c0"));
102 CHECK_RESULT(MDOaddqconstr(model, row2_nnz, row2_idx, row2_val, qc2_nnz, qc2_col1, qc2_col2, qc2_values, MDO_LESS_EQUAL, 1.0, "c1"));
103
104 /*------------------------------------------------------------------*/
105 /* Step 3. Solve the problem and populate optimization result. */
106 /*------------------------------------------------------------------*/
107 /* Solve the problem. */
108 CHECK_RESULT(MDOoptimize(model));
109
110 CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
111 if (status == MDO_OPTIMAL)
112 {
113 CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
114 printf("The optimal objective value is: %f\n", obj);
115 for (int i = 0; i < 4; ++i)
116 {
117 CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
118 printf("x[%d] = %f\n", i, x);
119 }
120 }
121 else
122 {
123 printf("No feasible solution.\n");
124 }
125
126 /*------------------------------------------------------------------*/
127 /* Step 4. Free the model. */
128 /*------------------------------------------------------------------*/
129 RELEASE_MEMORY;
130
131 return 0;
132}