5.5.2. MIQP Modeling and Optimization in CΒΆ

In this chapter, we will use MindOpt C API to model and solve the problem in Example of Mixed Integer Quadratic Programming.

First of all, include the header files:

29#include "Mindopt.h"

Create an optimization model m:

93    CHECK_RESULT(MDOemptyenv(&env));
94    CHECK_RESULT(MDOstartenv(env));
95    CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));

Next, we set the optimization sense to minimization via MDOsetintattr() and add four decision variables using MDOaddvar() (please refer to C API for more detailed usages of C API):

105    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0,         10.0, MDO_INTEGER, "x0"));
106    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 2.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
107    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
108    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));

Now we set the constraint matrix \(A\) following the same procedure as in LP. The arrays row1_idx and row2_idx represent positions of the non-zero elements in the first and second rows while row1_val and row2_val represent corresponding values of the non-zero elements.

68    int qo_col1[] = 
69    {
70        0, 
71        1,   1,
72                  2,
73                       3  
74    };
75    int qo_col2[] =
76    {
77        0,
78        0,   1,
79                  2,
80                       3
81    };
82    double qo_values[] =
83    {
84        1.0,
85        0.5, 1.0,
86                  1.0, 
87                       1.0
88    };

We call MDOaddconstr() to input the linear constraints into the model m:

68    int qo_col1[] = 
69    {
70        0, 
71        1,   1,
72                  2,
73                       3  
74    };
75    int qo_col2[] =
76    {
77        0,
78        0,   1,
79                  2,
80                       3
81    };
82    double qo_values[] =
83    {
84        1.0,
85        0.5, 1.0,
86                  1.0, 
87                       1.0
88    };

Next, we will introduce the quadratic terms in the objective. Three arrays are utilized for this purpose. Specifically, qo_col1, qo_col2, and qo_values record the row indices, column indices, and values of all the non-zero quadratic terms.

110    /* Add constraints.
111     * Note that the nonzero elements are inputted in a row-wise order here.

Once the model is constructed, we call MDOoptimize() to solve the problem:

116    /* Add quadratic objective term. */
117    CHECK_RESULT(MDOaddqpterms(model, 5, qo_col1, qo_col2, qo_values));

Then, we can retrieive the optimal objective value and solutions as follows:

128    {
129        CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
130        printf("The optimal objective value is: %f\n", obj);
131        for (int i = 0; i < 4; ++i) 
132        {
133            CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
134            printf("x[%d] = %f\n", i, x);
135        }
136    } 
137    else 

Lastly, we call MDOfreemodel() and MDOfreeenv() to free the model:

30/* Macro to check the return code */
31#define RELEASE_MEMORY  \
146       

Complete example codes are provided in MdoMIQPEx1.c.

  1/**
  2 *  Description
  3 *  -----------
  4 *
  5 *  Mixed Integer Quadratic optimization (row-wise input).
  6 *
  7 *  Formulation
  8
  9 *  -----------
 10 *
 11 *  Minimize
 12 *    obj: 1 x0 + 1 x1 + 1 x2 + 1 x3 
 13 *         + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
 14 *  Subject To
 15 *   c0 : 1 x0 + 1 x1 + 2 x2 + 3 x3 >= 1
 16 *   c1 : 1 x0 - 1 x2 + 6 x3 = 1
 17 *  Bounds
 18 *    0 <= x0 <= 10
 19 *    0 <= x1
 20 *    0 <= x2
 21 *    0 <= x3
 22 *  Integers
 23 *  x0 
 24 *  End
 25 */
 26
 27#include <stdio.h>
 28#include <stdlib.h>
 29#include "Mindopt.h"
 30
 31/* Macro to check the return code */
 32#define RELEASE_MEMORY  \
 33    MDOfreemodel(model);    \
 34    MDOfreeenv(env);
 35#define CHECK_RESULT(code) { int res = code; if (res != 0) { fprintf(stderr, "Bad code: %d\n", res);  RELEASE_MEMORY; return (res); } }
 36#define MODEL_NAME  "MIQCP_01"
 37#define MODEL_SENSE "ModelSense"
 38#define STATUS      "Status"
 39#define OBJ_VAL     "ObjVal"
 40#define X           "X"
 41
 42int main(void)
 43{
 44    /* Variables. */
 45    MDOenv *env;
 46    MDOmodel *model;
 47    double obj, x;
 48    int status, i;
 49
 50    /* Model data. */
 51    int    row1_idx[] = { 0,   1,   2,   3   };
 52    double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
 53    int    row2_idx[] = { 0,    2,   3   };
 54    double row2_val[] = { 1.0, -1.0, 6.0 };
 55
 56    /* Quadratic objective matrix Q.
 57     * 
 58     *  Note.
 59     *  1. The objective function is defined as c^Tx + 1/2 x^TQx, where Q is stored with coordinate format.
 60     *  2. Q will be scaled by 1/2 internally.
 61     *  3. To ensure the symmetricity of Q, user needs to input only the lower triangular part.
 62     * 
 63     * Q = [ 1.0  0.5  0    0   ]
 64     *     [ 0.5  1.0  0    0   ]
 65     *     [ 0.0  0.0  1.0  0   ]
 66     *     [ 0    0    0    1.0 ]
 67     */
 68    int qo_col1[] = 
 69    {
 70        0, 
 71        1,   1,
 72                  2,
 73                       3  
 74    };
 75    int qo_col2[] =
 76    {
 77        0,
 78        0,   1,
 79                  2,
 80                       3
 81    };
 82    double qo_values[] =
 83    {
 84        1.0,
 85        0.5, 1.0,
 86                  1.0, 
 87                       1.0
 88    };
 89
 90     /*------------------------------------------------------------------*/
 91    /* Step 1. Create environment and model.                            */
 92    /*------------------------------------------------------------------*/
 93    CHECK_RESULT(MDOemptyenv(&env));
 94    CHECK_RESULT(MDOstartenv(env));
 95    CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));
 96
 97
 98    /*------------------------------------------------------------------*/
 99    /* Step 2. Input model.                                             */
100    /*------------------------------------------------------------------*/
101    /* Change to minimization problem. */
102    CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
103
104    /* Add variables. */
105    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0,         10.0, MDO_INTEGER, "x0"));
106    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 2.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
107    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
108    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
109
110    /* Add constraints.
111     * Note that the nonzero elements are inputted in a row-wise order here.
112     */
113    CHECK_RESULT(MDOaddconstr(model, 4, row1_idx, row1_val, MDO_GREATER_EQUAL, 1.0, "c0"));
114    CHECK_RESULT(MDOaddconstr(model, 3, row2_idx, row2_val, MDO_EQUAL,         1.0, "c1"));
115
116    /* Add quadratic objective term. */
117    CHECK_RESULT(MDOaddqpterms(model, 5, qo_col1, qo_col2, qo_values));
118    
119    /*------------------------------------------------------------------*/
120    /* Step 3. Solve the problem and populate optimization result.                */
121    /*------------------------------------------------------------------*/
122    /* Solve the problem. */
123    CHECK_RESULT(MDOoptimize(model));
124    
125        
126    CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
127    if (status == MDO_OPTIMAL) 
128    {
129        CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
130        printf("The optimal objective value is: %f\n", obj);
131        for (int i = 0; i < 4; ++i) 
132        {
133            CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
134            printf("x[%d] = %f\n", i, x);
135        }
136    } 
137    else 
138    {
139        printf("No feasible solution.\n");
140    }
141 
142    /*------------------------------------------------------------------*/
143    /* Step 4. Free the model.                                          */
144    /*------------------------------------------------------------------*/
145    RELEASE_MEMORY;
146       
147    return 0;
148}